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Abstract. We present a quantitative parameter-free method for calculating defect
states and charge-transition levels of point defects in semiconductors. It combines
the strength of density-functional theory for ground-state total energies with qua-
siparticle corrections to the excitation spectrum obtained from many-body pertur-
bation theory. The latter is implemented within the G0W0 approximation, in which
the electronic self-energy is constructed non-self-consistently from the Green’s func-
tion of the underlying Kohn–Sham system. The method is general and applicable
to arbitrary bulk or surface defects. As an example we consider anion vacancies
at the (110) surfaces of III–V semiconductors. Relative to the Kohn–Sham eigen-
values in the local-density approximation, the quasiparticle corrections open the
fundamental band gap and raise the position of defect states inside the gap. As a
consequence, the charge-transition levels are also pushed to higher energies, leading
to close agreement with the available experimental data.

1 Introduction

The electric properties of semiconductors, and hence their applicability in
electronic devices, are to a large degree governed by defects that are either
intrinsic or incidentally or intentionally introduced impurities. Considerable
efforts, therefore, focus on determining the factors that lead to the formation
of point defects and their influence on a material’s electric properties.

The progress in the understanding of the atomic structure of point de-
fects at cleaved III–V semiconductor surfaces, which serve as an illustration
in this work, was recently reviewed by Ebert [1]. The possibility to image
individual defects using scanning tunneling microscopy (STM) with atomic
resolution, in particular, has yielded a wealth of data, but as STM provides
a somewhat distorted picture of the electronic states close to the Fermi en-
ergy, these results cannot (and should not) be identified directly with the
atomic geometry. Electronic-structure calculations have hence turned out to
be an indispensable tool for the interpretation of the experimental findings.
A deeper discussion of this point together with an example for the practical
structure determination of a semiconductor surface is given in [2]. For point
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defects at the (110) surfaces of III–V semiconductors several calculations
were reported [3–8]. They are based on density-functional theory [9], where
the exchange-correlation energy is typically treated in the local-density ap-
proximation (LDA) [10] or generalized gradient approximations (GGA) [11].
The agreement with experimental STM data appears to be very good. For
example, the enhanced contrast of the empty pz orbitals of the two Ga atoms
nearest to an anion vacancy in p-type GaAs(110) observed under positive bias
and initially interpreted as an outward relaxation [12] could thus be under-
stood to result, instead, from a downward local band bending accompanied
by an inward relaxation [3]. The band bending itself is caused by the positive
charge of the defect. Another controversy centers on the lateral relaxation of
the positively charged anion vacancy. While STM images show a density of
states preserving the mirror symmetry of the surface at the defect site [12],
early theoretical studies of the lattice geometry based on total-energy min-
imization produced conflicting evidence for [3] and against [4, 5] a possible
breaking of the mirror symmetry. Well-converged electronic-structure calcu-
lations later confirmed that the distortion is indeed asymmetric [6–8] and that
the apparently symmetric STM image results from the thermally activated
flip motion between two degenerate asymmetric configurations.

In contrast, theoretical predictions of the electronic properties of point
defects have been less successful and still show significant quantitative de-
viations from experimental results. The principal quantities of interest are
the location of defect states in the fundamental band gap as well as the
charge-transition levels. We will carefully distinguish in this chapter between
these two quantities: “defect states” or “defect levels” on the one hand and
“charge-transition levels” on the other. The former are part of the electronic
structure and can, in principle, be probed by photoemission spectroscopy, al-
though standard spectroscopic techniques are often not applicable due to the
low density of the surface defects. The Franck–Condon principle is typically
well justified, because the rearrangement of the atoms happens on a much
slower timescale than the photoemission process. Nevertheless, the coupling
of the electrons to the lattice may be visible in the linewidths and lineshapes.
The defect levels thus contain the full electronic relaxation in response to
the created hole in direct photoemission or the injected extra electron in in-
verse photoemission, but no atomic relaxation. Although investigations of
electronic properties frequently rely on the Kohn–Sham eigenvalues from
density-functional theory, these only provide a first approximation to the
true band structure, and quantitative deviations from experimental results
must be expected. In particular, for many materials the eigenvalue gap both
in the LDA and the GGA underestimates the fundamental band gap signifi-
cantly. Likewise, the position of defect states in the gap cannot be determined
without systematic errors. With these words of warning we note, however,
that the Kohn–Sham eigenvalues constitute a good and well-justified start-
ing point for calculating band structures and defect states [13]. Therefore, a
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perturbative approach starting from the Kohn–Sham eigenvalue spectrum is
indeed appropriate.

While the measurement of the defect levels (see the discussion on the page
previous of this Chapter) probes the geometry before the electron is added
or removed, the charge-transition levels are thermodynamic quantities and
specify the values of the Fermi energy where the stable charge state of the
defect changes. Therefore, the charge-transition levels are affected noticeably
by the atomic relaxation taking place upon the addition or removal of an
electron. A quantitative analysis must hence be able to accurately compare
the formation energies of competing configurations with different numbers of
electrons. Density-functional theory at the level of the LDA or GGA is capa-
ble of giving a good account of the atomic geometries for many materials. A
critical feature is the nonlinearity of the exchange-correlation functional. The
pseudopotential approximation, which effectively removes the inner shells
from the calculation by modeling their interaction with the valence electrons
in terms of a modified potential, linearizes the core–valence interaction and
thus does not treat this contribution correctly. In particular, freezing the d
electrons in the core of a pseudopotential leads to poor lattice constants and
a distorted electronic structure for some III–V semiconductors, such as GaN,
where the Ga 3d states resonate strongly with the N 2s states [14]. For GaAs
and InP this is a lesser problem, because the cation d states are energetically
well below the anion 2s states and thus are relatively inert. As a result, the
LDA and the GGA yield only small deviations from the experimental lattice
constants and provide a good starting point for quasiparticle band-structure
calculations. However, when competing configurations with a different num-
ber of electrons are compared, the relevant energy differences lack the required
quantitative accuracy. As we will show in more detail below, the reason is
that these jellium-based approximations of the exchange-correlation energy
ignore important features of the exact functional, such as the discontinuity
of the exchange-correlation potential with respect to a change in the particle
number. As a consequence, previous calculations of charge-transition levels
based on the LDA exhibit systematic errors, for example for anion vacancies
at InP(110) [6].

As an alternative approach to the electronic structure of point defects,
we employ techniques adapted from many-body perturbation theory that we
have found to be very fruitful in the past [15]. Exchange and correlation
effects are here described by a nonlocal and frequency-dependent self-energy
operator. The solutions of the ensuing nonlinear eigenvalue equations have
a rigorous interpretation as excitation energies and can be identified with
the electronic band structure. We discuss the calculation of defect states
as well as charge-transition levels within this framework and show that the
results improve significantly upon earlier values obtained from the Kohn–
Sham scheme in the LDA. As an example we consider anion vacancies at
GaAs(110) and InP(110), but the method is general and can also be applied to
other defects at surfaces as well as in the bulk. The (110) surfaces are not only
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the natural cleavage planes of III–V semiconductors, but they have several
characteristics that make them particularly interesting for defect studies. As
no surface states exist inside the fundamental band gap [16, 17], the Fermi
energy of a system that is clean and free from intrinsic defects is not pinned
but controlled by the doping of the crystal. Only imperfections, such as anion
vacancies or antisite defects, can introduce gap states and pin the Fermi
energy at the surface. STM can probe filled and empty surface states by
reversing the bias voltage [12], and both the GaAs(110) and the InP(110)
surface are well characterized experimentally.

This Chapter is organized as follows. We start in Sect. 2 by reviewing
the computational methods. In Sect. 3 we then explain the physics of the
defect-free GaAs(110) and InP(110) surfaces. The calculation of defect lev-
els is discussed in Sect. 4 and that of charge-transition levels in Sect. 5,
together with a comparison with the available theoretical and experimental
data. Finally, Sect. 6 summarizes our conclusions. Unless explicitly indicated
otherwise, we use Hartree atomic units.

2 Computational Methods

A quantitative analysis of the electronic properties of point defects requires
computational schemes that describe not only the ground state but also
the excitation spectrum. While density-functional theory with state-of-the-
art exchange-correlation functionals can be used to determine ground-state
atomic geometries, many-body perturbation theory is the method of choice
for excited states. In this work we take the Kohn–Sham eigenvalues in the
LDA as a first estimate and then apply the G0W0 approximation for the
electronic self-energy as a perturbative correction. The latter provides a good
account of the discontinuity as well as other shortcomings of the LDA. For
this reason we first review both schemes, emphasizing their strengths as well
as limitations.

2.1 Density-Functional Theory

Density-functional theory is based on the Hohenberg–Kohn theorem [9],
which observes that the total energy EN,0 of a system of N interacting
electrons in an external potential Vext(r) is uniquely determined by the
ground-state electron density nN (r). While the Hohenberg–Kohn theorem
itself makes no statement about the mathematical form of this functional, it
has inspired algorithms that exploit the reduced number of degrees of free-
dom compared to a treatment based on many-particle wavefunctions. In the
Kohn–Sham scheme [10], which underlies all practical implementations, the



Quasiparticle Calculations for Point Defects at Semiconductor Surfaces 169

density is constructed from the orbitals of an auxiliary noninteracting system
according to

nN (r) = 2
∞∑

j=1

fN,j |ϕN,j(r)|2 . (1)

The occupation numbers fN,j are given by the Fermi distribution; at zero
temperature they equal one for states below the Fermi energy and zero for
states above. The factor 2 stems from the spin summation. Here we only
consider nonmagnetic systems and thus assume two degenerate spin channels
throughout, although the formalism can easily be generalized if necessary.
The energy functional is decomposed as

EN,0 ≡ E[nN ] = Ts[nN ] +
∫

Vext(r)nN (r) d3
r + EH[nN ] + Exc[nN ] , (2)

where Ts[nN ] is the kinetic energy of the auxiliary noninteracting system
and EH[nN ] the Hartree energy. The last term incorporates all remaining
exchange and correlation contributions and is not known exactly. In practical
implementations it must be approximated, for example by the LDA, which
replaces the exchange-correlation energy Exc[nN ] by that of a homogeneous
electron gas with the same local density [10]. A variational analysis finally
shows that the total energy is minimized if the single-particle orbitals satisfy

[
− 1

2∇
2 + Vext(r) + VH([nN ]; r) + Vxc([nN ]; r)

]
ϕN,j(r) = εKS

N,jϕN,j(r) .

(3)

The Hartree potential VH([nN ]; r) and the exchange-correlation potential
Vxc([nN ]; r) are defined as functional derivatives of the corresponding en-
ergy terms with respect to the density. The eigenvalues εKS

N,j are Lagrange
parameters that enforce the normalization of the orbitals.

We use the Kohn–Sham scheme to determine the equilibrium geometry
of clean surfaces and surface defects by relaxing the atomic coordinates and
allowing the system to explore its energetically most favorable configuration.
Although the Kohn–Sham eigenvalues differ from the true excitation energies
and constitute only an approximation to the quasiparticle band structure,
they are often numerically close in practice. This follows from the transition-
state theorem of Slater [18] and Janak [19] and allows a correction within
perturbation theory. Here, we are interested in the position of the defect state,
which may be occupied or unoccupied, relative to the surface valence-band
maximum. As the defect state is separated from the valence-band maximum
by a finite energy difference, the location obtained from the Kohn–Sham
eigenvalue spectrum contains two sources of errors: In addition to the cho-
sen approximation for the exchange-correlation functional, there is another
systematic error that is due to fundamental limitations of the Kohn–Sham
scheme and would also be present if the exact functional was employed. In
order to understand the latter, we now briefly sketch its origin.
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One rigorous result is that the eigenvalue of the highest occupied Kohn–
Sham state matches the corresponding quasiparticle energy [20], which is in
turn equal to the ionization potential that marks the threshold for photoe-
mission, i.e., εKS

N,N = EN,0−EN−1,0. If the highest occupied state corresponds
to the valence-band maximum, then the unoccupied defect state equals the
electron affinity εKS

N+1,N+1 = EN+1,0−EN,0, because it is the next to be popu-
lated by one extra electron added to the system. Unfortunately, this is not the
same as the eigenvalue εKS

N,N+1 of the first unoccupied state obtained from (3).
The difference is due to the fact that the exchange-correlation potential of
an insulator Vxc([nN+1]; r) = Vxc([nN ]; r) + ∆xc + O(1/N) with ∆xc > 0
changes discontinuously upon addition of an extra electron [21,22]. A similar
argument can be made if the defect state is occupied. As a consequence, the
Kohn–Sham eigenvalue gaps differ systematically from the gaps in the true
quasiparticle band structure. The magnitude of the discontinuity is still a
matter of controversy but is believed to be significant. For pure sp-bonded
semiconductors like GaAs the LDA underestimates the experimental band
gap by about 50%. The GGA, designed only to improve the total energy,
yields a very similar eigenvalue spectrum as the LDA when applied to the
same atomic geometry. An entirely different construction that permits a more
systematic treatment of exchange and correlation is the optimized effective
potential method [23]. When evaluated to first order in the coupling con-
stant, this approach yields the exact exchange potential, which can be used
in band-structure calculations [24]. Remarkably, for many semiconductors the
resulting Kohn–Sham eigenvalue gaps are very close to the true quasiparticle
band gaps [25]. The significance of this observation is under debate, how-
ever, because there are indications that it may not uphold if correlation is
treated on the same footing. Preliminary results suggest that the eigenvalue
gaps are again close to the LDA values if correlation is included within the
random-phase approximation [26, 27], but there is currently too little data
to make a definite statement, and all existing calculations at this level also
contain additional simplifications, for example a shape approximation for the
potential in the linearized muffin-tin orbital method in [27].

The reasoning above suggests that density-functional theory is still, in
principle, applicable for calculating the difference in total energy between
ground-state configurations with different electron numbers, which is needed
to determine the energetically most favorable charge state of a point defect.
However, all jellium-based functionals lack the derivative discontinuity ∆xc

of the exact exchange-correlation potential. This neglect reduces the electron
affinity EN+1,0−EN,0 both in the LDA and the GGA if the additional electron
occupies a state separated from the valence-band maximum by a finite energy
difference. For systems in contact with an electron reservoir, such as defects in
solids, it hence lowers the threshold for an increase of the electron population.
This is consistent with the observation that the calculated charge-transition
levels for materials like InP are significantly smaller than the available values
deduced from experimental measurements [6]. The exact exchange potential,
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an implicit functional of the density defined in terms of the Kohn–Sham
orbitals, includes a derivative discontinuity [13], but the latter exceeds the
experimental band gap significantly and must hence be partially canceled by
a correlation contribution with similar magnitude and opposite sign [25]. As
the total energies are by construction close to the corresponding Hartree–
Fock values, the electron affinities EN+1,0 − EN,0 are grossly overestimated,
and no reliable charge-transition levels can be obtained in this way.

Our implementation of density-functional theory employs the plane-wave
pseudopotential method in combination with the LDA. We use the parame-
trization by Perdew and Zunger [28], which is in turn based on the quan-
tum Monte-Carlo data of Ceperley and Alder for the homogeneous electron
gas [29]. The norm-conserving pseudopotentials are of the fully separable
Kleinman–Bylander form [30]. We choose d as the local component for all
pseudopotentials except for In, where p is used instead. The Kohn–Sham
wavefunctions are expanded in plane waves with a cutoff energy of 15 Ry.
Our calculations are performed with the FHImd code [31, 32]. The bulk lat-
tice constants obtained in this way, 5.55 Å for GaAs and 5.81 Å for InP in the
absence of zero-point vibrations, are in good agreement with previously pub-
lished data [33] and slightly smaller than the experimental values at room
temperature by 1.8% and 1.1%, respectively [34]. We use the theoretical
lattice constants in order to prevent errors resulting from a nonequilibrium
unit-cell volume during the relaxation of the surface geometries.

2.2 Many-Body Perturbation Theory

Many-body perturbation theory [35] provides powerful techniques to analyze
the electronic structure in the gap region, because the framework is designed
specifically to give access to excited states. Quasiparticle excitations created
by the addition or removal of one electron are obtained from the one-particle
Green’s function

G(r, r′; t − t′) = −i〈ΨN,0|T {ψ̂(r, t)ψ̂†(r′, t′)}|ΨN,0〉 , (4)

where |ΨN,0〉 denotes the ground-state wavefunction of the interacting elec-
tron system in second quantization, ψ̂†(r′, t′) = exp(iĤt′)ψ̂†(r′) exp(−iĤt′)
and ψ̂(r, t) = exp(iĤt)ψ̂(r) exp(−iĤt) are the electron creation and annihi-
lation operators in the Heisenberg picture, respectively, and the symbol T
sorts the subsequent list of operators according to ascending time arguments
from right to left with a change of sign for every pair permutation. The
Green’s function can be interpreted as a propagator: For t > t′ it describes
a process in which an extra electron is added to the system at time t′. The
resulting wavefunction is, in general, no eigenstate of the Hamiltonian Ĥ but
a linear combination of many eigenstates |ΨN+1,j〉. Between the times t′ and
t each projection evolves with its own characteristic phase, and a Fourier
analysis of this oscillatory behavior immediately yields the energy spectrum
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εN,j = EN+1,j −EN,0 of the accessible excited states. Likewise, for t′ > t the
Green’s function describes the propagation of an extra hole between t and t′,
yielding the energies εN,j = EN,0−EN−1,j. In mathematical terms, we insert
a complete set of eigenstates between the field operators in (4) and Fourier
transform to the frequency axis. The resulting expression

G(r, r′; ω) = lim
η→+0

∞∑
j=1

fN,j

ψN,j(r)ψ∗
N,j(r

′)
ω − εN,j − iη

+ lim
η→+0

∞∑
j=1

(1 − fN,j)
ψN,j(r)ψ∗

N,j(r
′)

ω − εN,j + iη
(5)

shows that the poles of the Green’s function correspond directly to the quasi-
particle energies εN,j. Significantly, these not only yield the true band struc-
ture, but the highest occupied state also equals the exact ionization potential
EN,0 − EN−1,0 and the lowest unoccupied state the exact electron affinity
EN+1,0 − EN,0. Therefore, many-body perturbation theory provides a con-
venient way to analyze both defect states and the energetics of charge tran-
sitions. The wavefunctions ψN,j(r) = 〈ΨN−1,j|ψ̂(r)|ΨN,0〉 for occupied and
ψN,j(r) = 〈ΨN,0|ψ̂(r)|ΨN+1,j〉 for unoccupied states are obtained from the
quasiparticle equations

[
− 1

2∇
2 + Vext(r) + VH(r)

]
ψN,j(r)

+
∫

Σxc(r, r′, εN,j)ψN,j(r′) d3
r′ = εN,jψN,j(r) . (6)

The self-energy Σxc(r, r′, ε) incorporates all contributions from exchange and
correlation processes. In contrast to the exchange-correlation potential of
density-functional theory, it is nonlocal, energy dependent and has a finite
imaginary part, which is proportional to the damping rate resulting from
electron–electron scattering. Together with other relevant decay channels,
such as scattering from phonons or impurities, this mechanism is responsible
for a finite lifetime of the excitations.

For real materials the self-energy can only be treated approximately. Like
the majority of practical applications, we use the G0W0 approximation [36]

Σxc(r, r′; t − t′) = lim
η→+0

iG0(r, r′; t − t′)W0(r, r′; t − t′ + η) . (7)

The Fourier transform of G0(r, r′; t− t′) on the frequency axis is constructed
in analogy to (5) from the eigenstates of an appropriate mean-field system,
in our case from the Kohn–Sham orbitals ϕN,j(r) and eigenvalues εKS

N,j. The
dynamically screened Coulomb interaction W0(r, r′; t− t′) can be modeled in
different ways. Many implementations use plasmon-pole models, in which the
frequency dependence is described by an analytic function whose parameters
are determined by a combination of known sum rules and asymptotic lim-
its [37,38]. This simplification has the advantage that it facilitates an analytic



Quasiparticle Calculations for Point Defects at Semiconductor Surfaces 173

treatment, but it ignores details of the dynamic screening processes in a ma-
terial and thus constitutes a potential source of errors. Here we take the full
frequency dependence of the dielectric function into account by employing
the random-phase approximation

W0(k, ω) = v(k) + v(k)P0(k, ω)W0(k, ω) (8)

with the bare Coulomb potential v(k) = 4π/|k|2 and the polarizability

P0(r, r′; t − t′) = −2iG0(r, r′; t − t′)G0(r′, r; t′ − t) . (9)

The inclusion of dynamic screening derives from the concept of quasiparticles,
which comprise an electron or hole together with its surrounding polariza-
tion cloud. The composite is called a quasiparticle because it behaves in many
ways like a single entity. The polarization cloud is created by the repulsive
Coulomb potential and reduces the effective charge of the quasiparticle com-
pared to that of the bare particle at its center. The G0W0 expression (7)
constitutes the leading term in the expansion of the self-energy and is of first
order in the dynamically screened interaction. Finally, we exploit the formal
similarity between (6) and the Kohn–Sham equations (3) by evaluating the
quasiparticle energies within first-order perturbation theory as

εN,j = εKS
N,j + 〈ϕN,j |Σxc(εN,j) − Vxc[nN ]|ϕN,j〉 . (10)

The treatment within first-order perturbation theory is justified if the eigen-
values of the underlying Kohn–Sham system are already sufficiently close
to the expected quasiparticle band structure. This is guaranteed by the
transition-state theorem [18, 19]. Besides, the orbitals ϕN,j(r) are usually
a good approximation to the true quasiparticle wavefunctions. For the homo-
geneous electron gas both are plane waves and thus coincide exactly. Numer-
ical calculations for bulk semiconductors indicate an overlap close to unity
between the Kohn–Sham orbitals in the LDA and the quasiparticle wave-
functions obtained from (6) with the G0W0 approximation for states near
the band edges [39]. Larger effects have been observed for surfaces, especially
for image states, because the latter are located outside the surface in a region
where the LDA potential is qualitatively wrong [40,41]. Changes in the wave-
functions of other surface states can also be identified but have only a minor
influence on the quasiparticle energies in the gap region. For GaAs(110) this
has been confirmed explicitly [42].

In principle, the equations (4) to (9) could be solved self-consistently by
successively updating the self-energy with the quasiparticle orbitals derived
from it. This approach is appealing on formal grounds because it makes the
results independent of the original mean-field approximation. In addition, the
self-consistent Green’s function satisfies certain sum rules, including particle-
number conservation [43]. In practice, however, this procedure produces a
poor excitation spectrum. The reason lies in the mathematical structure of
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Hedin’s equations, which describe the recipe for constructing the self-energy
from the Green’s function by means of functional-derivative techniques [36].
The G0W0 approximation is the result of a single iteration. Further iter-
ations would not only ensure self-consistency in the Green’s function but
would also introduce higher-order self-energy terms, so-called vertex correc-
tions. If the latter are neglected, then the spectral features deteriorate, as
was first demonstrated for the homogeneous electron gas [44]. For bulk semi-
conductors self-consistency appears to lead to a gross overestimation of the
fundamental band gap [45] in combination with poor spectral weights and
linewidths. We hence follow the established procedure for practical applica-
tions and terminate the cycle at the G0W0 approximation. Of course, the
final results depend on the input Green’s function in this case.

Another point that has been raised in the same context concerns possible
errors resulting from the pseudopotential approach, which has traditionally
dominated applications of the G0W0 approximation. Numerical deviations
must be expected because the matrix elements of the self-energy in (10) are
influenced by the pseudoization of the wavefunctions – that is the neglect
of core states plus appropriate smoothening of the valence states in the core
region – and the treatment of the core–valence interaction in pseudopoten-
tial calculations. Indeed, a number of early all-electron implementations of
the G0W0 approximation, based on the linearized augmented plane-wave or
the linearized muffin-tin orbital method, found quasiparticle band gaps for
prototype semiconductors that were significantly smaller than previously re-
ported values and blamed the discrepancy on the pseudopotential approxima-
tion [46,47]. However, this claim was later refuted by all-electron calculations
using plane waves [48,49]. The issue is currently still under debate, but there
is mounting evidence that a large part of the observed discrepancy is due to
insufficient convergence of the early calculations in combination with deficien-
cies of the linearized basis sets for the description of high-lying unoccupied
states [48, 50]. If these factors are properly accounted for, then the deviation
is significantly reduced, and the all-electron results are again in good agree-
ment with experimental measurements. A certain discrepancy with respect
to pseudopotential calculations still remains, although the difference is small
compared to that from the Kohn–Sham eigenvalues. While some errors of the
pseudopotential approach can be partially suppressed, for example through
a better description of the core–valence interaction [51], many others are
inherent. In particular, the pseudopotential construction also entails an in-
correct description of high-lying states. A careful analysis of the quantitative
implications of the pseudopotential approximation is the subject of active
research.

The good quantitative agreement between the G0W0 approximation and
experimental band structures has been demonstrated for a wide range of bulk
materials, including III–V semiconductors [52–54]. Due to the high compu-
tational cost in present implementations, which stems from the evaluation
of the nonlocality of the propagators, their frequency dependence, and the
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Fig. 1. Bulk band structure of GaAs. The G0W0 approximation (straight lines)
opens the too small Kohn–Sham eigenvalue gap in the LDA (dashed lines) and is
in very good agreement with the experimental band gap. The calculation is carried
out at the theoretical lattice constant 5.55 Å, and the valence-band maximum is set
to zero in both schemes

need to include a large number of unoccupied states, there have been rela-
tively few applications to more complex systems so far, however. Furthermore,
these often contain additional simplifications: the two available studies of the
quasiparticle band structure of GaAs(110) both employed plasmon-pole mod-
els instead of the more accurate random-phase approximation [55, 56], and
the only published results for InP(110) were obtained within an even more
restrictive tight-binding formalism [57].

For a quasiparticle band-structure calculation the matrix elements of
the self-energy in (6) must be evaluated in the frequency domain for states
with a given wavevector k. Therefore, most practical implementations of the
G0W0 approximation choose a reciprocal-space representation for all propa-
gators. The cell-periodic part of the wavefunctions is often expanded in plane
waves [52, 55], although localized basis sets like Gaussian orbitals have also
been used [54]. The disadvantage of the representation in reciprocal space
is that the products (7) and (9) turn into numerically expensive multidi-
mensional convolutions. Therefore, we employ a representation in real space
and imaginary time [58, 59], in which the self-energy and the polarizability
can be calculated by simple multiplications. The projection on wavevectors
and imaginary frequencies used to solve the Dyson-type equation (8) can be
done efficiently by exploiting fast Fourier transforms. The imaginary time
and frequency arguments are chosen because the functions are smoother on
these axes and can be sampled with fewer grid points, although they contain
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exactly the same information. The physical self-energy on the real frequency
axis is eventually recovered by an analytic continuation.

As an illustration of the G0W0 approximation we show the calculated
bulk band structure of GaAs in Fig. 1. The band gap is direct and located at
Γ in the center of the Brillouin zone. While the LDA underestimates the fun-
damental band gap and yields a Kohn–Sham eigenvalue gap of only 0.78 eV
at a lattice constant of 5.55 Å, the subsequent addition of the self-energy cor-
rection opens the band gap to 1.55 eV, which is in very good agreement with
the experimental value of 1.52 eV [34]. As we measure all energies relative to
the valence-band maximum, we set the latter to zero and align the two sets
of curves at this point. The principal effect of the G0W0 approximation is a
rigid upward shift of the conduction bands, although the dispersion is also
slightly modified, as can be seen by the reduced bandwidth at the bottom of
the valence band. The band structure of InP looks very similar. In this case
we obtain a Kohn–Sham eigenvalue gap of 0.76 eV at the theoretical lattice
constant 5.81 Å and a quasiparticle band gap of 1.52 eV that is again close to
the experimental value 1.42 eV [34]. Incidentally, the band gap depends sensi-
tively on the lattice constant. For GaAs it decreases at a rate of −4.07 eV/Å
in the LDA and −4.59 eV/Å in the G0W0 approximation when the lattice
constant increases. For InP the values are −3.13 eV/Å and −3.68 eV/Å.

3 Electronic Structure of Defect-Free Surfaces

Before focusing on defect states we first briefly discuss the electronic struc-
ture of the defect-free GaAs(110) and InP(110) surfaces. The nonpolar (110)
surface, illustrated in Fig. 2, is the natural cleavage plane of the zincblende
lattice, because it cuts the smallest number of bonds per unit area. Both
the cations and anions in the terminating layer are threefold coordinated,
and each possess one dangling bond extending into the vacuum. Due to the
different electron affinities of the two species, charge is transfered from the
dangling bonds of the cations to those of the anions. This charge transfer
is the driving force for a structural relaxation, which consists of an outward
movement of the anion atoms and a corresponding inward movement of the
cation atoms [33]. As a result, the orbitals of the latter rehybridize from an
sp3 towards an energetically more favorable sp2 bonding situation in a nearly
planar environment; the empty pz-like orbitals perpendicular to this plane are
pushed to higher energies and form an unoccupied surface band. At the same
time, the three bonds between the anions and their neighboring group-III
atoms are rearranged at almost right angles and become more p-like in char-
acter; the nonbonding electron pairs in the fourth orbital pointing away from
the surface are in turn lowered in energy and give rise to an occupied surface
band. The relaxation preserves the C1h point-group symmetry with a single
mirror plane perpendicular to the [1̄10] direction.
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Fig. 2. Geometry of the anion vacancy at the GaAs(110) surface. The As atoms
are shown in light and the Ga atoms in dark gray. The three Ga atoms nearest to
the vacancy are indicated by arrows

In Fig. 3 we show the calculated band structure of the clean and defect-
free GaAs(110) surface at the theoretical lattice constant 5.55 Å, modeled as
a slab element placed in a supercell with periodic boundary conditions in all
directions. The slab consists of six atomic layers, of which the top three layers
are allowed to relax, while the three base layers are kept fixed at their ideal
bulk positions. The dangling bonds at the bottom of the slab are passivated
by pseudoatoms with noninteger nuclear charges of 0.75 and 1.25 for anion
and cation termination, respectively. The slabs are separated by a vacuum
region equivalent to four atomic layers. The gray-shaded regions in the fig-
ure mark the projection of the G0W0 bulk bands onto the two-dimensional
surface Brillouin zone, shown in the inset. The dashed lines indicate the oc-
cupied and unoccupied surface bands obtained from the LDA, the straight
lines are the corresponding G0W0 results. For the calculation of the ground-
state density and the Kohn–Sham eigenvalues we used four Monkhorst–Pack
k-points [60] in the irreducible part of the Brillouin zone, while the self-
energy was evaluated at the four high-symmetry points Γ, X

′
, M, and X. In

our implementation the k-point set enters merely as the reciprocal grid of
the real-space mesh used to describe the nonlocality of G0(r, r′; t − t′) and
Σxc(r, r′; t − t′) [58]; the four selected k-points correspond to a real-space
mesh that extends over four surface unit cells. This is sufficient, because the
correlation length is of the order of the interatomic distance [61]. The position
of the Kohn–Sham surface bands relative to the corresponding bulk bands
was determined by aligning the electrostatic potential in the central part of
the slab with that of the bulk. We then applied the self-energy correction
independently to surface and bulk bands and again chose the valence-band
maximum as the energy zero. From the figure it is evident that the G0W0

approximation has only a small effect on the dispersion of the surface bands.
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Fig. 3. Surface band structure of GaAs(110) in the LDA (dashed lines) and the
G0W0 approximation (straight lines) at the theoretical lattice constant 5.55 Å. The
gray-shaded regions mark the projected G0W0 bulk bands. The inset indicates the
two-dimensional surface Brillouin zone

While the position of the occupied surface band relative to the valence-band
edge at Γ remains almost unchanged, the upward shift of the unoccupied
surface band (0.86 eV) slightly exceeds that of the bulk conduction bands
(0.77 eV). The larger impact of the self-energy correction on the surface gap
was noticed before [55, 56]; our result for the gap correction lies between the
two previously published values. Small deviations of about 0.1 eV are due to
differences in the implementations, for example the reliance on plasmon-pole
models in [55, 56] compared to the random-phase approximation for the dy-
namically screened Coulomb interaction in this work. Both the occupied and
the unoccupied surface bands are in close proximity to the projected bulk
bands and, in fact, overlap with them in large parts of the Brillouin zone.
As neither extends into the fundamental gap between the bulk valence and
conduction band edges at Γ, they do not pin the surface Fermi level.

Although prevalent in electronic-structure calculations for surfaces, the
supercell approach is a drastic alteration of the system’s geometry whose in-
fluence must be carefully monitored, because the occurrence of electric mul-
tipole moments may lead to artificial long-range interactions between the pe-
riodic slabs. Static dipoles, if present, can be eliminated in density-functional
theory [62]. With this correction the limit of isolated slabs is quickly reached.
Dynamic dipoles are always created in dielectric media, however, and con-
tribute to the polarizability in the G0W0 approximation. Actually, there are
two contributions that must be distinguished. The first is the dynamic po-
larization between the slabs, which gives rise to an additional slowly varying
potential that reduces the band gap. This effect can be understood and even
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quantitatively modeled in terms of classical image charges [63]; for the geom-
etry used in this work it amounts to about 0.1 eV. The model thus allows an
a-posteriori extrapolation to the limit of an isolated slab. The second contri-
bution is the finite width of the slab, which increases the gap due to quan-
tization effects. At present there is no obvious cure for this problem within
the G0W0 approximation, and as the two effects counteract each other, we
have not applied any partial correction to eliminate the dynamic polariza-
tion between the slabs either. In principle, both problems could be avoided
by studying systems comprised of semi-infinite matter and vacuum regions.
Within density-functional theory several methods have indeed been proposed
for this purpose [64–67]. Their efficiency relies on the fact that a perturbation
breaking the translational symmetry, such as a surface or defect, modifies the
effective potential only in its immediate vicinity. In the G0W0 formalism this
cannot be exploited to the same degree, because all propagators are explicitly
nonlocal, and a much larger simulation cell must hence be taken into account.
So far, only one G0W0 calculation for an effectively one-dimensional system,
a semi-infinite jellium surface, has been reported [68].

In preparation for later applications to larger supercells, we repeated the
G0W0 calculation with lower cutoff energies and found that the self-energy
correction to the surface gap remained stable up to 10 Ry. The reason for
the rapid convergence, which is well known and can be exploited to reduce
the computational expense considerably, is that the kinetic energy and the
electrostatic Hartree potential, the two largest contributions to the quasipar-
ticle energies, are already included in the Kohn–Sham eigenvalues in (10); the
matrix elements of the self-energy are less sensitive to the number of plane
waves. Besides, we obtained essentially the same surface gap when reducing
the width of the slab to four layers. For this geometry and a cutoff energy of
10 Ry, we performed test calculations in which we included up to 1049 unoc-
cupied bands in the Green’s function. With 379 bands the results are already
converged within 0.02 eV, sufficient for our purpose.

4 Defect States

The geometry of the anion vacancy is illustrated in Fig. 2 for the GaAs(110)
surface. The removal of the As atom leaves each of the three Ga atoms sur-
rounding the vacancy with a dangling bond. As a consequence, the two GaI

atoms in the first layer move downwards while the GaII atom in the second
layer moves upwards and forms two new bonds with the GaI atoms across
the void. Its coordination number thus increases from four to five, while the
threefold coordination of the GaI atoms remains unchanged. The relaxation
preserves the C1h point-group symmetry, except in the positive charge state
where an asymmetric distortion that pushes the unoccupied defect level in
the band gap to higher energies is more favorable [6, 8]. We find that the
distortion lowers the total energy by 0.17 eV for GaAs and 0.11 eV for InP.
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The anion vacancy gives rise to three electronic states, all localized at the
GaI–GaII bond pair. They are labeled as 1a′, 1a′′ and 2a′, where a′ denotes
states that are even with respect to the mirror plane and a′′ denotes states
that are odd. Although the asymmetric relaxation in the positive charge state
destroys this symmetry and deforms the orbitals slightly, it leaves the order
of the states intact, and we continue to use the same notation for simplicity.
The 1a′ state is located several eV below the valence-band maximum and
thus always filled with two electrons, while the 2a′ state is too high in energy
to become populated. Only the 1a′′ state falls inside the fundamental band
gap. Depending on the doping, it can be occupied either by zero, one or
two electrons, which corresponds to the positive, neutral or negative charge
state, respectively. It is important to note that the charge state influences
the defect geometry, as the GaI–GaII bonds contract with increasing electron
occupancy, reflecting the bonding character of the 1a′′ state. In the following
we examine the position of this defect level for a given charge state; the
question of which charge state is preferred under specific conditions, such as
doping, is answered in the next section.

For the density-functional calculations we choose a supercell consisting of
2× 4 surface unit cells and six atomic layers. For charged systems we include
a uniform charge density with opposite sign in order to compensate the extra
electron or hole and restore overall neutrality in the supercell. Instead of a
well-defined defect state, the supercell periodicity gives rise to an artificial
dispersion as illustrated in Fig. 4. At the surface of each slab the defects form
a rectangular grid whose lattice parameters ax and ay equal the dimensions of
the supercell. Since the 1a′′ state is odd with respect to the mirror plane, one
can regard it as a p orbital that exhibits π-type bonding along the [001] and
σ-type bonding along the [1̄10] direction. We hence consider a tight-binding
model

εKS
k = εKS

1a′′ + 2V KS
1π cos(kxax) + 2V KS

1σ cos(kyay)

+ V KS
2 cos(kxax) cos(kxax) + 2V KS

3π cos(2kxax) + 2V KS
3σ cos(2kyay)

(11)

with parameters fitted to the calculated Kohn–Sham band, where εKS
1a′′ equals

the eigenvalue of a single defect and the other parameters have the meaning
of hopping integrals. The above expression includes interactions up to third-
nearest neighbors and reproduces the dispersion with a correlation coefficient
close to 0.999 9 for all systems under consideration.

As the G0W0 formalism involves nonlocal propagators, the amount of data
that must be processed grows rapidly with the system size. In order to limit
the computational expense we use a smaller (2×2) supercell and four atomic
layers instead of the (2 × 4) cell to determine the self-energy correction of
the 1a′′ state. The stronger defect–defect interaction along the [1̄10] direction
increases the dispersion but does not change it qualitatively. As the presence
of the defect does not modify the range of the nonlocal propagators appre-
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Fig. 4. Calculated 1a′′ defect level of the As vacancy at GaAs(110) in the (a) pos-
itive and (b) negative charge state (dashed line: LDA; solid line: G0W0). The arti-
ficial dispersion in the LDA is due to the supercell periodicity; the horizontal lines
mark the actual defect level εKS

1a′′ and the corresponding G0W0 result. As the cal-
culations in (a) refer to the constrained symmetric relaxation, the additional shift
due to the asymmetric distortion is shown separately. The inset in (b) indicates
the downfolded Brillouin zone for the (2 × 4) supercell

ciably, we use one k-point and 1500 unoccupied bands for the construction
of the Green’s function G0, which corresponds to the same Brillouin-zone
sampling as the four k-points and 379 bands that we found satisfactory for
the (1 × 1) unit cell of the defect-free surface. For the positively charged As
vacancy at GaAs(110) we evaluated the self-energy correction in the entire
Brillouin zone [15]. By relating the calculated quasiparticle dispersion to a
tight-binding model equivalent to (11), we found very similar values for the
parameters V3π and V3σ as in the LDA, which implies that the influence of
the third-nearest neighbors on the self-energy correction is negligible. This
observation can be exploited as follows. At k′ = (2π/4)(1/ax, 1/ay, 0) the
contributions from the first- and second-nearest neighbors vanish, so that
the Kohn–Sham eigenvalue is given by

εKS
k′ = εKS

1a′′ − 2V KS
3π − 2V KS

3σ , (12)

and the corresponding quasiparticle energy by

εk′ = ε1a′′ − 2V3π − 2V3σ . (13)
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If the surviving hopping integrals on the right-hand sides coincide, then
the identity ε1a′′ − εKS

1a′′ = εk′ − εKS
k′ holds. On the other hand, the self-energy

correction is defined through the relation

εk′ − εKS
k′ = 〈ϕKS

k′ |Σ(εKS
k′ ) − Vxc|ϕKS

k′ 〉 . (14)

Instead of a scan over the whole Brillouin zone, we can hence determine the
self-energy correction for an isolated defect from a single calculation at k′.
The quasiparticle results are obtained by adding this correction to the Kohn–
Sham value εKS

1a′′ of the larger (2×4) supercell, where the position of the latter
relative to the valence-band maximum can be established more accurately.
We estimate that the uncertainty of the final quasiparticle energies, which
results from the discrete k-point sampling, the approximate treatment of the
core–valence interaction in the pseudopotential approach, the finite size of
the supercell, and other convergence factors amounts to 0.1 eV to 0.2 eV.

We performed explicit G0W0 calculations for the positive and negative
charge states, in the first case using a constrained symmetric relaxation. The
results for GaAs(110) are displayed in Fig. 4. For the neutral anion vacancy
the supercell contains an odd number of electrons; in combination with the
requirement of spin degeneracy this leads to fractional occupation numbers in
each spin channel. At present we cannot treat such systems. For the positive
charge state with the proper asymmetric distortion the defect level in the
G0W0 approximation is not calculated directly but deduced as follows. As
the lowest unoccupied state, the 1a′′ defect level equals the electron affinity,
i.e., ε1a′′ = Evac(0, Qasym

+ ) − Evac(+, Qasym
+ ), where Evac(q, Q) denotes the

total energy of a surface featuring an anion vacancy with the actual electron
population q ∈ {+, 0,−} and a geometric structure optimized for the charge
state Q ∈ {Qasym

+ , Qsym
+ , Q0, Q−}. This expression can be rewritten as

ε1a′′ =
[
Evac(0, Qasym

+ ) − Evac(0, Qsym
+ )

]
+

[
Evac(0, Qsym

+ ) − Evac(+, Qsym
+ )

]
+

[
Evac(+, Qsym

+ ) − Evac(+, Qasym
+ )

]
(15)

by adding and subtracting intermediate configurations. The term in the sec-
ond line on the right-hand side equals the quasiparticle energy for the corre-
sponding symmetric relaxation, which can be calculated with less computa-
tional cost by exploiting the C1h point-group symmetry. The other two terms
are simple total-energy differences between the symmetric and the asymmet-
ric geometry for a constant number of electrons; both are positive and can
be obtained from density-functional theory.

The calculated defect levels are summarized in Table 1 for GaAs(110)
and Table 2 for InP(110). Our LDA results are consistent with most of the
previously published calculations [3, 5, 7]. A notable exception are the values
by Zhang and Zunger [3] for the negative charge state of the As vacancy at
GaAs(110) and for the constrained symmetric geometry of the positive charge
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Table 1. Calculated defect levels for the As vacancy at GaAs(110) in eV relative
to the valence-band maximum. For the positive charge state the first column refers
to the asymmetric and the second to the constrained symmetric relaxation. The
quasiparticle band gap of 1.55 eV in this work, calculated at the theoretical lattice
constant 5.55 Å, is close to the experimental value of 1.52 eV

Charge state (+1) (0) (−1)

LDA (this work) 0.70 (0.06) 0.13 0.24

LDA [3] 0.73 (0.41) 0.5

LDA [5] (0.06) 0.23 0.24

G0W0 (this work) 1.08 (0.59) 0.48

Table 2. Calculated defect levels for the P vacancy at InP(110) in eV relative to
the valence-band maximum. For the positive charge state the first column refers
to the asymmetric and the second to the constrained symmetric relaxation. The
quasiparticle band gap of 1.52 eV in this work, calculated at the theoretical lattice
constant 5.81 Å, slightly exceeds the experimental value of 1.42 eV

Charge state (+1) (0) (−1)

LDA (this work) 0.89 (0.39) 0.49 0.60

LDA [7] (0.326) 0.479 0.580

G0W0 (this work) 1.36 (0.91) 1.01

state in Table 1. After a full relaxation of the asymmetric distortion in the
latter case, the discrepancy vanishes, however. The agreement with the results
of Kim and Chelikowsky [5] for the same system is very good, except for a
difference of 0.1 eV for the neutral charge state. The origin of these deviations
cannot be traced, because both groups of authors give very little information
about their computational details, and the size of the corresponding Kohn–
Sham eigenvalue gap is not stated. For all configurations with symmetric
geometries the defect level moves steadily upwards with increasing electron
population. The asymmetric distortion has a large effect on the unoccupied
defect level and pushes it to significantly higher energies. Concomitant with
the opening of the fundamental band gap, the G0W0 approximation adds a
positive quasiparticle correction to all defect levels and predicts larger values
than the LDA for all charge states. The size of the self-energy shift depends
both on the charge state and the geometry, although the differences are of the
same order as the error bar of the calculation. We note that our numerical
values differ slightly from those reported earlier in [15]. The discrepancy is due
to an improved description of the anisotropic screening in the slab geometry
in this work but lies within the estimated overall error bar of the calculation.



184 Arno Schindlmayr and Matthias Scheffler

For the P vacancy at InP(110) we obtain a similar picture, although the defect
levels are at higher energies both in the LDA and the G0W0 approximation.

Unfortunately, due to experimental difficulties, no direct measurements of
the defect states by photoemission are available. In this situation one can only
try to extract values from indirect methods like surface photovoltage imaging
with STM. One study using this technique claimed a value of 0.62 ± 0.04 eV
for the As vacancy in the positive charge state, based on the known position
of the sample’s Fermi energy 0.09 eV above the valence-band maximum and
a local band bending of 0.53 eV [69]. An STM measurement on a different
sample found a band bending of only 0.1 eV, however [12]. The origin of this
discrepancy is unclear but points to a strong influence of experimental con-
ditions and/or sample quality. Because of this uncertainty, no experimental
values are included in the tables.

5 Charge-Transition Levels

The occurrence of different charge states is a direct consequence of the posi-
tion of the defect level inside the fundamental band gap: in p-doped materials
the defect state lies above the Fermi energy and is hence depopulated, whereas
it is fully occupied in n-doped materials with a higher Fermi energy close to
the conduction-band edge. Indeed, a charge state of (+1) has been confirmed
experimentally for anion vacancies at p-GaAs(110) [70] and p-InP(110) [71]
and a charge state of (−1) at n-GaAs(110) [72] and n-InP(110) [73]. In a
theoretical treatment the stable charge state can be identified by comparing
the different formation energies

Eform(q, µA, εF) = Evac(q, Qq) + µA + qεF − Esurf , (16)

where we use the same notation for the total energy of the vacancy as in the
previous section. The chemical potential µA of the anion atoms is controlled
by the partial pressure and temperature, εF denotes the Fermi level and Esurf

is the total energy of the defect-free surface. The qualitative behavior of the
formation energies is illustrated in Fig. 5: due to their different slopes the
stable charge state with the lowest formation energy changes from positive
to negative as the Fermi energy varies between the valence-band maximum
and the conduction-band minimum. In between there may be a region where
the neutral vacancy is stable. The charge-transition levels are defined as the
values of the Fermi energy where the curves intersect and the stable charge
state changes. They are given explicitly by ε+/0 = Evac(0, Q0)−Evac(+, Q+)
for the transition from q = +1 to q = 0 and ε0/− = Evac(−, Q−)−Evac(0, Q0)
for the transition from q = 0 to q = −1.

All quantities in (16) are ground-state energies and can, in principle, be
calculated within density-functional theory. As explained above, however,
the parametrizations most commonly used in practical implementations lack
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Fig. 5. Qualitative behavior of the formation energies for anion vacancies in the
positive (V+

A), neutral (V0
A), and negative (V−

A) charge state. The Fermi energy
is limited by the valence-band maximum and the conduction-band minimum. The
charge-transition levels ε+/0 and ε0/− mark the values of the Fermi energy where
the stable charge state with the lowest formation energy changes

essential properties of the exact exchange-correlation functional, so that the
charge-transition levels obtained in this way suffer from systematic errors.
For a more accurate quantitative description we use the same trick as in (15)
and rewrite ε+/0 as

ε+/0 = [Evac(0, Q0) − Evac(0, Q+)] + [Evac(0, Q+) − Evac(+, Q+)] (17)

by adding and subtracting the total energy Evac(0, Q+) of a configuration
with the atomic geometry of the positively charged vacancy but with one
extra electron. In this way the charge-transition level is naturally decom-
posed into two distinct contributions. The first term on the right-hand side
is purely structural and describes the relaxation energy of the neutral sys-
tem from the atomic structure optimized for the positive charge state to its
own equilibrium geometry. It is always negative and can be calculated within
density-functional theory. We obtain −0.59 eV for GaAs(110) and −0.54 eV
for InP(110) when taking the asymmetric distortion into account. The sec-
ond term on the right-hand side is purely electronic and equals the electron
affinity of the positively charged vacancy, which in a many-body framework
corresponds to the lowest unoccupied state, i.e., the empty 1a′′ defect level in
the band gap. This was already calculated within the G0W0 approximation
in the preceding section and can be taken from Tables 1 and 2. In the same
spirit we rewrite ε0/− as

ε0/− = [Evac(−, Q−) − Evac(0, Q−)] + [Evac(0, Q−) − Evac(0, Q0)] . (18)

The first term now equals the ionization potential of the negatively charged
vacancy, corresponding to the highest occupied quasiparticle state. Again
this is the 1a′′ defect level, which in this case is filled with two electrons,
and the G0W0 results can be taken from the tables in the previous section.
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The second term is the energy difference between the electrically neutral
system in the atomic structure optimized for the positive charge state and
its own relaxed geometry. This contribution is always positive and can be
obtained from density-functional theory. We obtain 0.12 eV for GaAs(110)
and 0.08 eV for InP(110). The structural component is much smaller than
for ε+/0 because there is no symmetry-breaking distortion in this case, only
a minor reduction of the Ga–Ga bond length across the vacancy.

Incidentally, the charge-transition levels within the LDA, which are usu-
ally obtained according to the definitions ε+/0 = Evac(0, Q0) − Evac(+, Q+)
and ε0/− = Evac(−, Q−) − Evac(0, Q0) by evaluating the total-energy differ-
ences directly, can also be decomposed into structural and electronic energy
contributions. The latter are not given by the Kohn–Sham eigenvalues in
Tables 1 and 2, however. Instead, they must be calculated with the help of
the transition-state theorem [18] from intermediate configurations with half-
integer occupation numbers of 1/2 and 3/2 electrons, respectively.

Table 3. Calculated charge-transition levels for the As vacancy at GaAs(110) in
eV relative to the valence-band maximum. For ε+/0 the first column refers to the
asymmetric and the second to the constrained symmetric relaxation

Transition level ε+/0 ε0/−

LDA (this work) 0.24 (0.07) 0.15

LDA [3] 0.32 0.4

LDA [5] (0.10) 0.24

G0W0 (this work) 0.49 (0.32) 0.60

In Table 3 we summarize the results for the As vacancy at GaAs(110). In
contrast to earlier studies [3, 5] that found a small energy window in which
the neutral charge state is stable, our own calculation at the level of the LDA
predicts ε+/0 > ε0/− if the correct asymmetric distortion is taken into ac-
count and hence a direct transition from the positive to the negative charge
state, but the small energy difference is within the uncertainty of the calcu-
lation. The G0W0 approximation, on the other hand, reverses this ordering
and simultaneously moves all charge-transition levels to higher energies. The
values for the constrained symmetric relaxation are merely shown for the
purpose of comparison with earlier work. The deviations from earlier LDA
studies, especially by Zhang and Zunger [3], are related to differences of
similar magnitude in the defect states, which were already mentioned above.

The results for the P vacancy at InP(110) are given in Table 4. For this
material an indirect experimental measurement of ε+/0, obtained with a com-
bination of scanning tunneling microscopy and photoelectron spectroscopy,
is available [6]. Consistent with previous studies [6, 7], we find that the LDA
significantly underestimates the experimentally deduced value. The larger
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Table 4. Calculated charge-transition levels for the P vacancy at InP(110)

Transition level ε+/0 ε0/−

LDA (this work) 0.47 (0.39) 0.54

LDA [6] 0.52 (0.45)

LDA [7] 0.388 0.576

G0W0 (this work) 0.82 (0.79) 1.09

Expt. [6] 0.75 ± 0.1

G0W0 result, however, lies within the error bar of the experimental measure-
ment. We take this as a confirmation of our approach and an indicator that
the other defect states and charge-transition levels calculated within the same
framework are also meaningful. Nevertheless, further calculations for different
systems are necessary to establish the general validity of this scheme.

6 Summary

We have presented a parameter-free method for calculating defect states and
charge-transition levels of point defects in semiconductors. Compared to pre-
vious studies that extracted these quantities directly from the self-consistent
iteration of the Kohn–Sham equations, it apparently corrects important er-
rors that are inherent in all jellium-based exchange-correlation functionals
and employs a separation of structural and electronic energy contributions.
While the former are accurately obtainable in density-functional theory, we
use many-body perturbation theory and the G0W0 approximation for the
self-energy to calculate the latter with proper quasiparticle corrections. The
scheme is general and can be applied to arbitrary bulk or surface defects. As
an example we examined the electronic structure of anion vacancies at the
(110) surfaces of III–V semiconductors. For the As vacancy at GaAs(110) our
calculation indicates that all three charge states including the neutral con-
figuration are stable, in contrast to the LDA that predicts a direct transition
from the positive to the negative charge state. Due to a general lack of ex-
perimental data, a direct comparison between theoretical and experimental
values is only possible for the charge-transition level ε+/0 of the P vacancy at
InP(110). In this case our calculation is in good agreement with the exper-
imentally deduced result and constitutes a clear improvement over previous
LDA treatments. Nevertheless, besides an improvement of experimental tech-
niques, further developments in theoretical and computational procedures are
highly desirable. Our method only opens the door to novel approaches; with
present implementations the results are derived at a cost that may be in-
feasible for more complex systems, and the numerical uncertainty of 0.1 eV
to 0.2 eV is often of the same order as the relevant energy differences. The
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study of excitons, which, e.g., play an important role at GaAs(110) [74],
further requires an extension of the mathematical framework beyond single
quasiparticles.
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[34] O. Madelung, U. Rössler, M. Schulz (Eds.): Landolt-Börnstein: Numerical Data

and Functional Relationships in Science and Technology – New Series, vol.
III/41A (Springer, Berlin, Heidelberg 2001) 171, 176

[35] G. D. Mahan: Many-Particle Physics, 3rd ed. (Springer, Berlin, Heidelberg
2000) 171

[36] L. Hedin: Phys. Rev. A 139, 796 (1965) 172, 174
[37] W. von der Linden, P. Horsch: Phys. Rev. B 37, 8351 (1988) 172
[38] G. E. Engel, B. Farid: Phys. Rev. B 47, 15931 (1993) 172
[39] M. S. Hybertsen, S. G. Louie: Phys. Rev. B 34, 5390 (1986) 173
[40] I. D. White, R. W. Godby, M. M. Rieger, R. J. Needs: Phys. Rev. Lett. 80,

4265 (1998) 173
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[45] W.-D. Schöne, A. G. Eguiluz: Phys. Rev. Lett. 81, 1662 (1998) 174
[46] W. Ku, A. G. Eguiluz: Phys. Rev. Lett. 89, 126401 (2002) 174
[47] T. Kotani, M. van Schilfgaarde: Solid State Commun. 121, 461 (2002) 174
[48] M. L. Tiago, S. Ismail-Beigi, S. G. Louie: Phys. Rev. B 69, 125212 (2004) 174
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